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" S I M P L E "  S O L U T I O N S  O F  T H E  E Q U A T I O N S  O F  

D Y N A M I C S  F O R  A P O L Y T R O P I C  G A S  

L. V. Ovsyannikov UDC 533 

The notion of  a "simple" solution of  a system of differential equations that admit a local Lie 
group G of transformations of the basic space is considered as an invariant H-solution of type 
(0, O) with respect to the subgroup H C G. Such solutions are attractive since they are described 
by explicit formulas that provide a clear physical interpretation for them. For gas-dynamic 
equations with a polytropic gas law, all simple solutions that are not related to special forms of 
gas flow are listed. Examples of simple solutions are given and the collapse phenomenon, which 
has been previously studied for barochronic flows, is described. 

I n t r o d u c t i o n .  The  equations of gas dynamics (EGD) of a polytropic gas for the velocity vector u = 
(u, v, w), density p, pressure p, and entropy S as functions of t ime t and the coordinates m = (x, y, z) have 
the form 

p D u + V p = O ,  D p + p d i v u = O ,  D p + T p d i v u = O ,  p = S p  "r ( D = 0 t + u . V )  (1) 

with the adiabatic exponent 7 = const > 0. It is known [1] that  system (1) has fairly wide symmetry, namely, 
it admits (following Lie) the 13-dimensional group G13 of transformations of the space Rg(t, z ,  u,  p,p). 

The Lie algebra of the operators L13 acting on R 9 that  corresponds to the group G13 has the form 

z k uk0 ,) (i 1, 2 ,3) ,  Xi = 0~,  Xi4-3 = toni + 0~,  X1+6 = cik(z 0~t + = 
(2) 

i X10 = 0t, X l l  = tot -~- 27 Oxi , X13 = tot - UiOu i --~ 2p0p, X14 = pop --~ p0p 

in the designations (x, y, z) = (x 1, x 2, x3), (u, v, w) = (u 1, u 2, u3), 0,i = O/Ox i, Ot -- O/Ot, etc., elk is a standard 
skew-symmetric tensor, and ~32 = 1. The repeated indexes denote summation. (Number 12 is reserved for the 
operator Xx2, which extends L13 to L14 in the case 7 = 5/3.) 

The purpose of the SUBMODEL program is to find all the possibilities induced by the indicated 
symmetry property for constructing classes of exact solutions of the EGD [2]. Such possibilities are provided 
for by the subgroups H C G13 (the subalgebras L C L13), each of which can generate a class of solutions 
described in terms of the  invariants of the group H. The invariants are related by differential equations that  
follow from (1) and, generally speaking, have reduced dimension. These equations form a factor system that  
describes the H-submodel for the EGD. 

The H-submodels are classified by their types (~r, 8), where cr is the rank of the submodel  (the number of 
invariant independent variables) and 8 is its defect (the number of noninvariant unknown functions). Invariant 
submodels are distinguished by the condition 6 = 0. 

Submodels of type (0,0) hold a special position among all H-submodels. For them, the unknown 
invariants are constants and the factor system is reduced to a system of finite relations between these constants. 

The solutions of the  EGD obtained from submodels of type (0,0) are called simple solutions. 
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The simplest member of the set of simple solutions is a constant solution (a quiescent gas with constant 
density and pressure). On the whole, this set (infinite) is rich in nonequivalent classes of various simple 
solutions. 

The present work is concerned with preliminary classification of simple solutions of the EGD (1). 
Classes of simple solutions possessing a particular generality are selected, their singularities are indicated, and 
particular examples are given. 

Select ion of Subalgebras.  Submodels of type (0,0) are generated by the four-dimensional subalgebras 
L4 C LI3. All these subalgebras with accuracy up to similarity are listed in the optimal system of 
the subalgebras OLla [3], which contains a total of 290 representatives of L4,i (with ordinal numbers 
i -- 1, 2 , . . .  ,290). However, not all of them are suitable for constructing submodels of type (0,0). First of 
all, the subalgebra L4,i should obey the following two necessary conditions. 

I. L4,i does not have invariants of the form j = j ( t ,  z) .  
II. The factor system obtained is consistent. 
Thus, only 124 representatives satisfy condition I, of which 39 lead to inconsistent factor systems, and, 

hence, 85 representatives satisfy both conditions I and II. The submodels of type (0,0) generated by them have 
been constructed, but, at the same time, many of them provide a description of particular cases of special gas 
flows. At the present stage of investigation, it is not expedient to consider simple solutions for the gas flow 
types III-V indicated below and the corresponding systems of equations. 

III. Barochronic flows, defined by the relation p = p(t): 

D u  = 0, div u = -p '  /'yp. 

They include isobaric flows with p -- const. 
IV. Thermal flows, characterized by constant density p -- const ~t 0: 

D u  § Vp = O, Dp = O, d i v u = 0 .  

V. Isothermal flows, characterized by constant velocity of sound c -- const; for ")' = 1, 

D u + V e = O ,  D e + d i v u = O  (e - - lnp) ,  

and for "y ~t 1, system IV is the case. 
These models should be given an independent group analysis, which has not yet been completed. It 

is pertinent to note that system IV has not yet been reduced to involution. The barochronic model III was 
studied in [4]. 

Resul ts .  Besides the subalgebras generated by submodels III-V for gas flows, there are 34 
representatives of L4,i indicated in Tables 1 and 2. Their additional classification by the dimensions of the 
solutions obtained is compiled here. 

The dimension of a simple solution is the number N of independent variables of the form hi = )~i(t, z)  
(i = 1 , . . . ,  N) on which the solution obtained depends. The number N is given by the formula 

where g.r. denotes the "general rank" of the indicated Jacobian matrix. A solution of dimension N is denoted 
by the symbol DN. In all, there are 2 solutions D1, 14 solutions D2, 10 solutions D3, and 8 solutions D4. 

Table 1 lists 26 subalgebras L4,i that generate simple solutions of class D N  for N = 1,2,3. The 
dimension N is given in the first column, the number i of the subalgebra L4,i from the optimal system | [3] 
is given in the second column, the basis of the operators of this subalgebra in the third columns, the limitations 
of parameters that guarantee that condition I is satisfied and the solution falls in the corresponding class D N  
are given in the fourth column, and the independent variables on which the solution depends are given in the 
fifth column. The basic operators are written in abbreviated form, only with the numbers of the generating 
operators (2). For example, the expression (2)11 - 13 + a14 denotes the operator 2Xll - X 1 3  -[- aX14, where 
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TABLE 1 
Subalgebras L4,i Generating Simple  Solutions of  Classes D N  (N = I, 2, 3) 

N 

1 

2 

Basis Li,~ Limitations Characterist ic  
vaxiables 

2, 3, 11, 7 + a13 + b14 a ys 0 x / t  
2, 3, 11, 13 + a 1 4  z / t  

73 
75 
62 1, a4 + 6,11,13 -t- b14 
87 2, 3, 4 +  a6 + 1O, (2)11 -- 1 3 +  b14 
91 2, 3, 4 + 1 0 , ( 2 ) 1 1 - 1 3 + a 1 4  
93 2, 3, 4 + 1 0 , 7 -  2 a l l  -b a13 + b14 

231 1, 11, 7 + a13, b13 -t- 14 
232 1, 11, 13,7 + a 1 4  
234 1, 10, 7 -k a l l  q- b13, e l l  -t- d13 -t- 14 
235 1 ,10 ,  a l l  +13 ,  7 + b l l  + c14 
239 1, 10, 2 + 13, a2 -I- b3 + 14 
276 2, 3, 7 + a l0  - b l l  q- b13, 

c l0 - d l l  + d13 -b 14 
277 2 , 3 , 7 + a l l W b 1 3 ,  c l l + d 1 3 + 1 4  
283 2, 3, a l0 - 11 q- 13, 7 -b bl0 q- 14 
284 2, 3, a l0  - 11 "F 13, bl0 -b 14 
285 2, 3, a l l  + 13, 7 q- b l l  Jr c14 
286 2, 3, a l l  + 13, b l l  q- 14 

b#O 
a~O 
c~O 
a~O 
b#O 

bc - ad ~ 0 

bc - ad # 0 

~/~, ~1~ 
t, x - t2 /2  
t, Z -- t2/2  
t, X -- t2 /2  

r/t, 0 
r / t ,  0 

r, 0 
r, 0 
t , x  
t,x 

x / l ,  x 

5, 6, 7 + a13 + b14, 11 
5, 6, 11,13 + a14 
1, 7 + a l l , b4  + 13, c l l  + 14 
4, 1 1 , 7 + a 1 3 ,  b l l + 1 4  
4, 11, 13, 7 q-a14 
1, 4 + 10, 7 + 2 a l l  -- a13, 
2b l l  - b13 + 14 
1, 4 + 10, (2)11 - 13,7 + a l l  
1, a4 + 6, b l l  + 13, c l l  + 1 4  
1, 2 + 4, a10 - 11 + 13, b10 + 14 

b#O 
b#O 
b#O 
b#O 
a#O 

b#O 

b#O 

c#O 

t~x 
t , x  

x / t ,  X 

�9 l t ,  ~1~, ~ l t  
�9 l t ,  y / t ,  z l t  

t, r ,  0 
�9 l t ,  ~ l t ,  o 

t,r, 0 

t, r, 0 
t, ~/t, ~/t 

t, y, z 

TABLE 2 
Subalgebras L4,i Generat ing Simple Solutions of  Classes D4 

i 

216 
252 

Subclass 

D4] 
D4:  

D43 

255 
256 

Basis L4,1 Limitations 

4, 7-t- a l l , b l l  + 13, c l l  + 14 c ~ 0  
5, 6, 7 + a l l  -t- b13, c l l +  d13 + 14 ad - bc ys 0 
5, 6, a l l  + 13, 7 -I- b l l  -t- c14 b :~ 0 
5, 6, a l l - b 1 3 ,  b l l + 1 4  b ~ 0  
5, 6, a l + 2 + 1 3 ,  b l + d 2 + c 3 + 1 4  
5, 6, a l + 1 3 ,  b l §  
5, 6, a l  + 13, bl + 14 
5, 6, a l  -b 7 q- bl3, cl  q- d13 + 14 

b-~O 

b#O 
ad - bc ~ 0 

is an arbitrary parameter. The  polar coordinates (r, 0) in the plane (y, z) are introduced by the formulas 

y = r c o s 0 ,  z = r s i n 0 .  (3) 

Table 2 lists the remaining eight subalgebras L4,i that  generate simple solutions of the class D4. These 
solutions can be divided into three subclasses D4k (k = 1, 2, 3), in each of which the solution formulas have 
the same form. Therefore, here the notation of the subclass is indicated in the first column, the second and 
third columns are the same as in Table 1, and the limitations of parameters are given in the fourth column. 
Fhis provides a compact description of all simple solutions of the class D4. 

S imp le  S o l u t i o n s  D41.  The  solution is represented as 

1 1 1 
u = -[(x + Ur) ,  v = - [ ( V y  - W z ) ,  w = - [ ( W y  + V z ) ,  p = t a - l r B - 2 e K e R ,  p = tA-3rBeh 'OP,  

where (r, 0) are polar coordinates (3). Here U, V, W, R, and P are in essence the invariants of the subalgebra, 
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and the constants A, B, and K are expressed in terms of the parameters (a, b, c) of the series of subalgebras, 
namely: A -- 3 - b/c, B = (b + 1)/c, and K = -a / c .  

Substitution of the representation into the EGD (1) leads to the factor system 

P = W 2 _ V 2 g Y = O ,  K P = ( 1 - 2 V ) W ,  B-~  + V ,  B V + K W + A = O ,  2 7 V = 3 - 7 .  

The solution must satisfy the conditions V 2 + W 2 # 0 and B 2 + K 2 # O, the first of which guarantees that 
the solution falls in the class D4, and the second prevents the solution from falling in the class of barochronic 
solutions. The following possibilities arise: 

1 ~ V ( V  - 1)(2V - 1) # 0. By virtue of the expression V = (3 - 7)/27,  this is equivalent to the 
inequality (7 - 1)(2"r - 3)(7 - 3) # 0. Here U = 0, and the constants B, K, and P / R  are expressed in terms 
of A, V, and W by the formulas 

W 2 - V 2 + V ( 1 -  2 V ) W  P 1 
B =  ( V _  I)(V2 + w 2 ) A ,  K =  (V--17(~--~-~I/.2~A, --~= _ ( V - 1 ) ( V 2  + W2)' (4) 

where the condition of positiveness of the value of P / R  must be satisfied, namely, (V - 1)A > 0, which is 
equivalent to the condition (7 - 1)A < 0. The solution depends on four arbitrary constants V, W, A, and 7, 
related by the indicated formulas. 

2 ~ V = 0. A solution exists only for 7 = 3. Formulas (4) are brought to the form 

B = - A ,  K W  = - A ,  P / R  = - W 2 / A  (W # O). 

We obtain the simple solution 

x U r W z w y  tA_3r_Ae_AO/Wp, u = - [ +  t '  v = - -  -[, w =  t '  P = t A - l r - A - 2 e - A O / W R '  P =  

and the condition A < 0 must be satisfied. The solution depends on three arbitrary constants U, W, and A. 
3 ~ V = 1/2 A solution exists only for "7 = 3/2. Here U = 0, and formulas (4) are brought to the form 

B = - 2 A ,  K = O ,  P / R =  - ( W  2+1 / 4 ) / 2A .  

We obtain the simple solution" 

x y - 2 W z  2Wy + z # A _ l r _ 2 A _ 2 R  ' tA_3r_2Ap, 
u = - [ ,  v =  2 t  , w =  2 t  ' P =  P =  

and the condition A < 0 must be satisfied. The solution depends on two arbitrary constants W and A. 
4 ~ V = 1. A solution exists only for 7 = 1. Here U = 0, and from the factor system it follows that 

W # 0 and K # 0. We obtain the relations A = 0 and B = - K W ,  which give the simple solution 

x y -- W z  W y  + z t_lr_KW_2eKOR, u = - - -  w = - -  p = p = t -3r-KWeKOp, 
t '  v =  t ' t ' 

where P / R  = - W / K  for K W  < 0. The solution depends on two arbitrary constants W and K. 
S i m p l e  Solu t ions  D42. The solution is represented as 

UZ__ z tA+2zB_ 2 tAxBp.  u =  v = -  y w = -  p =  R, p =  
t '  t '  t '  

Here U, R, and P are in essence invariants of any subalgebra of the subclass D42 (Table 2), and the constants 
A and B are uniquely expressed in terms of the corresponding parameters a, b, c, and d of these subalgebras. 
These constants must satisfy the inequalities A + B # 0 and B # 0, the first of which ensures that the solution 
falls in the  class D4, and the second prevents the solution from falling in the class of barochronic solutions. 

Substitution of the representation into the EGD (1) leads to the factor system 

P 
B - ~ = U - U  2, ( B - 1 ) U + A + 4 = O ,  ( B + ~ / ) U + A + 2 7 = O .  
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The condition U - U 2 ~ 0 is necessary, which is equivalent to (7 - 1)(7 - 2) r 0. Here the constant B r 0 
remains arbitrary, and the remaining constants are expressed in terms of it: 

U = 2  2 - 3 '  A = 2  7 - 2  6"/ P 6 ( 7 - 1 ) ( 7 - 2 )  
7 + 1 '  7 + 1 B  7 + 1 '  R =  B ( 7 + 1 )  2 

Here B and 3' must satisfy the inequalities B(3' - 1) # 2"/and B(3' - 1)(3' - 2) < 0. When these inequalities 
are fulfilled, the solution depends on two arbitrary constants B and 3'. 

S imple  So lu t ions  D43 .The  solution is represented as 

1 1 1 - v=-[(y+f(A)) ,  w=-[(z+g(A)),  p=t-2eAaR, p=t-4eAap, A = x - - l n t .  
u=  t , 

Here f and g are, generally speaking, arbitrary functions of the variable A. For particular submodels from 
Table 2, they have the following values: 

�9 f = rnA and g = nA for i = 248, 
� 9  
�9 f = h cos (mA) and g = h sin (mA) for i = 254, 

and the constants m, n, h, and A axe uniquely expressed in terms of the parameters a, b, c, and d of the 
corresponding subalgebras. 

The condition that the solution falls in the class D4 is A ~ 0. Substitution of the representation into 
the EGD gives a factor system that  is reduced to the relations 3' = 2 and AP = R, and, hence, A > 0 must 
hold here. The solution depends on a maximum of three arbitrary constants, for example, m, n, and A. 

Collapse.  The phenomenon of collapse, namely, reversal of density into infinity at t = 0, is typical of 
gas flows described by simple solutions of the class D4. In contrast to baxochronic gas flows [4], the geometry 
of collapse in this case is more complex since the trajectories of gas particles are not rectilinear. 

Below, for greater physical obviousness, in the simple solutions considered we perform the 
transformation "reversal of time" t ~ 1 - t as u ---* . -u ,  which is admitted by the EGD. The gas flow 
is considered in the interval 0 ~< t ~< 1. Then, at t = 0 there is no singularity, and collapse occurs at t = 1. 

The particle trajectories are described by solutions of the system 

d.__~dt = u(x, t), x t=0 = x0. (5) 

Let a solution of this system be x = X(t, xo). Elimination of time t gives the equations of the projection 
L(xo) of the paxticle trajectory issuing from the point x0 at t = 0 onto the space R3(x). The points of the 
collapse are on these projections and can be obtained from the expressions Xl = X(1,  x0). Since the Jacobian 
matrix OX/Oxo, generally speaking, degenerates at t = 1, the set of points of the collapse M(xl)  has a 
dimension less than three in R3(x),  i.e., this can be a point, a line, or a two-dimensional surface (sometimes, 
located at infinity). Below, the collapse phenomenon is illustrated for two simple solutions of the class D4. 

So lu t ion  D412 ~ In cylindrical coordinates, the velocity field has the form [r and 0 axe determined 
in (3)] 

1 r 
= 1 - i  (x + U r ) '  v r = 0 ,  v 0 = T : - 7  W, 

where u, vr , and v0 are, respectively, the axial (on the x axis), radial, and circumferential components of 
the velocity vector. Then, the solution of the corresponding system (5) is 

x = ( x 0 + U r 0 ) ( 1 - t ) - U r 0 ,  r = r 0 ,  0 = 0 0 + W i n ( I - t ) .  

The projections L(xo) of the trajectories onto R3(x) are given by the equations 

0 - 0o 
r = r 0 ,  x = ( x 0 + U r 0 ) e x p  W Uro. 

The points of the collapse (t = 1) are defined by the equations xl = -Uro and rl = r0, and the coordinate 
0] remains uncertain since the angle 0 --* o~ as t ~ 1 (if W < 0). The set of points of the collapse M ( x l )  is 
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Q •  / /  0 

Fig. 1. Typical trajectory of a particle Q starting at t = 0 from the 
point (=0, r0, 80). 

Y 1 / / ~  

/ I 
/ / I  I I 

/ 

/ ~lJ~,,t"~/ t / x f ,, / 
I - - - - T  / 
I 11" 
I / 
I / /  b" 

Fig. 2. Typical trajectories of particles Q starting at t = 0 from 
the planes x = x0 and = = x0 - 2~r. 

the cone described by the equation x] = -Url. Any trajectory that  issues at t = 0 from the point (x0, r0, 80) 
lies on a cylinder of radius r0 (with the z axis) and is wound without restriction on it with an exponentially 
decreasing step, approaching the circle of the collapse - -  the section of the cylinder cut by the plane x = -Uro 
[which coincides with the intersection of the cylinder and the cone M(~:I)]. A typical trajectory is qualitatively 
shown in Fig. 1. 

So lu t ion  D 4 a  
written as 

(i = 254). For simplicity, we assume that  m = 1. Then, the velocity field can be 

1 1 
u=-- l_t ,  v=  1 - i  (y +hc~ 

1 
w= l_ t ( z+hs inA) ,  A = x + l n ( 1 - t ) ,  

and in the representation of the density and pressure, A must  be replaced by - A .  
The solution of the corresponding system (5) has the form 

= = =0 - In (1  - t ) ,  y = (y0  + h c o s  = o ) ( 1  - t )  - h c o s  = 0 ,  

z = (z0 + h sin=0)(1 - t) - hsin =0. 

The projections L(~0) of the trajectories onto R3(~) are given by the equations 

y + h cos x0 = (y0 + h cos =0)e zo-=, z + h sin x0 = (z0 + h sin x0)e ~o-x 
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and are planar curves. The points of the collapse (t = 1) are given by the equations 

Xl = +co, yl = - h c o s x 0 ,  zl = - h s i n x 0 .  

The set of points of the collapse M(x] )  is a circle of radius [hi with center on the x axis at x = +c~. The  
particle trajectories issuing at t = 0 from the planes x = x0 and x = x0 + 27rn (n = +1,  =t=2,...) come at the 
same point on M(x l ) .  Typical trajectories are shown qualitatively in Fig. 2. 

C o n c l u s i o n .  The above examples of simple solutions of the EGD (1) show tha t  these solutions are 
far from being trivial: they describe rather complex gas flows. At the same time, the relative simplicity of 
the formulas of these solutions allows one to find the particle trajectories in finite form and to study the 
dynamics of the collapse in detail. The same circumstance can simplify the solution of a number of interesting 
gas-dynamic problems, such as continuation of the solution behind the collapse, conjugation of different simple 
solutions via weak and strong discontinuities, decay of an arbitrary discontinuity, etc. It is planned to publish 
a comprehensive list of all simple solutions of the EGD (1). 

The author  is grateful to A. P. Chupakhin for useful discussions of the problems considered in the 
present paper and to S. V. Khabirov for providing some materials on submodels of type (0,0). 
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